Scale analysis of natural convection
From ThermalFluidsPedia
(Created page with 'While scale analysis cannot provide the exact functions in eq. (6.36), the form of these functions can be provided (Bejan, 2004). Let us refer to Fig. 6.1 and con…') 

Line 1:  Line 1:  
  While scale analysis cannot provide the exact functions in eq. (6.36), the form of these functions can be provided [[#References(Bejan, 2004)]]. Let us refer to Fig. 6.1 and consider the governing equations in the thermal boundary layer (<math>y\sim {{\delta }_{t}}</math>) for the entire flat plate (<math>x\sim L</math>). The thickness of the thermal boundary layer in which the effects of the heated wall are felt is much smaller than the length of the vertical plate, i.e. <math>{{\delta }_{t}}\ll L</math>. For the continuity equation (6.17) to be satisfied, the scales of the two terms must be the same:  +  While scale analysis cannot provide the exact functions in eq. (6.36), the form of these functions can be provided [[#References(Bejan, 2004)]]. Let us refer to Fig. 6.1 and consider the governing equations in the thermal boundary layer (<math>y\sim {{\delta }_{t}}</math>) for the entire flat plate (<math>x\sim L</math>). The thickness of the thermal boundary layer in which the effects of the heated wall are felt is much smaller than the length of the vertical plate, i.e. <math>{{\delta }_{t}}\ll L</math>. For the continuity equation (6.17) to be satisfied, the scales of the two terms must be the same:<math>\frac{u}{L}\sim \frac{v}{{{\delta }_{t}}}</math> 
  +  
  <math>\frac{u}{L}\sim \frac{v}{{{\delta }_{t}}}</math>  +  
The scale of the velocity component in the ydirection is therefore:  The scale of the velocity component in the ydirection is therefore:  
  +  
+  { class="wikitable" border="0"  
+    
+   width="100%" <center>  
<math>v\sim \frac{{{\delta }_{t}}}{L}u</math>  <math>v\sim \frac{{{\delta }_{t}}}{L}u</math>  
  +  </center>  
+  {{EquationRef(1)}}  
+  }  
  which indicates that <math>v\ll u</math> for flow in the thermal boundary layer. The scale of the velocity component in the xdirection, u, is still unknown at this point.  +  which indicates that <math>v\ll u</math> for flow in the thermal boundary layer. The scale of the velocity component in the xdirection, ''u'', is still unknown at this point. 
While the left hand side of the energy equation (6.21) shows the effect of advection, the righthand side shows the effect of diffusion. The scales of the two advective terms on the left hand side of eq. (6.21) are:<math>u\frac{\partial T}{\partial x}\sim u\frac{\Delta T}{L},\text{ }v\frac{\partial T}{\partial y}\sim v\frac{\Delta T}{{{\delta }_{t}}}\sim u\frac{\Delta T}{L}</math>  While the left hand side of the energy equation (6.21) shows the effect of advection, the righthand side shows the effect of diffusion. The scales of the two advective terms on the left hand side of eq. (6.21) are:<math>u\frac{\partial T}{\partial x}\sim u\frac{\Delta T}{L},\text{ }v\frac{\partial T}{\partial y}\sim v\frac{\Delta T}{{{\delta }_{t}}}\sim u\frac{\Delta T}{L}</math>  
  which indicates that the scale of the second term on the left hand side of eq. (6.21) is identical to the scale of the first term when the scale of the velocity component in the ydirection is given by eq. (6.37). The temperature difference <math>\Delta T={{T}_{w}}{{T}_{\infty }}</math> in the above scale analysis represents the scale of the excess temperature, <math>T{{T}_{\infty }}</math>. The scale of the righthand side of eq. (6.21) is:  +  which indicates that the scale of the second term on the left hand side of eq. (6.21) is identical to the scale of the first term when the scale of the velocity component in the ydirection is given by eq. (6.37). The temperature difference <math>\Delta T={{T}_{w}}{{T}_{\infty }}</math> in the above scale analysis represents the scale of the excess temperature, <math>T{{T}_{\infty }}</math>. The scale of the righthand side of eq. (6.21) is: <math>\alpha \frac{{{\partial }^{2}}T}{\partial {{y}^{2}}}\sim \alpha \frac{\Delta T}{\delta _{t}^{2}}</math> 
  +  
  <math>\alpha \frac{{{\partial }^{2}}T}{\partial {{y}^{2}}}\sim \alpha \frac{\Delta T}{\delta _{t}^{2}}</math>  +  
The scales of the two sides of the energy equation must be the same:<math>u\frac{\Delta T}{L}\sim \alpha \frac{\Delta T}{\delta _{t}^{2}}</math>  The scales of the two sides of the energy equation must be the same:<math>u\frac{\Delta T}{L}\sim \alpha \frac{\Delta T}{\delta _{t}^{2}}</math>  
The above equation can be used to estimate the scale of u as follows:  The above equation can be used to estimate the scale of u as follows:  
  +  
+  { class="wikitable" border="0"  
+    
+   width="100%" <center>  
<math>u\sim \alpha \frac{L}{\delta _{t}^{2}}</math>  <math>u\sim \alpha \frac{L}{\delta _{t}^{2}}</math>  
  +  </center>  
+  {{EquationRef(2)}}  
+  }  
The scale of v can be obtained by substituting eq. (2) into eq. (1):  The scale of v can be obtained by substituting eq. (2) into eq. (1):  
  +  
+  { class="wikitable" border="0"  
+    
+   width="100%" <center>  
<math>v\sim \frac{\alpha }{{{\delta }_{t}}}</math>  <math>v\sim \frac{\alpha }{{{\delta }_{t}}}</math>  
  +  </center>  
+  {{EquationRef(3)}}  
+  }  
where the scale of the thermal boundary layer thickness, δ<sub>t</sub>, is still unknown at this point.  where the scale of the thermal boundary layer thickness, δ<sub>t</sub>, is still unknown at this point.  
Line 32:  Line 43:  
The respective scales of the two inertial terms on the lefthand side of the momentum equation (6.20) are:  The respective scales of the two inertial terms on the lefthand side of the momentum equation (6.20) are:  
  <math>u\frac{\partial u}{\partial x}\sim \frac{{{u}^{2}}}{L}</math>  +  <math>u\frac{\partial u}{\partial x}\sim \frac{{{u}^{2}}}{L}</math> 
  +  
<math>v\frac{\partial u}{\partial y}\sim v\frac{u}{{{\delta }_{t}}}\sim \frac{{{u}^{2}}}{L}</math>  <math>v\frac{\partial u}{\partial y}\sim v\frac{u}{{{\delta }_{t}}}\sim \frac{{{u}^{2}}}{L}</math>  
Line 45:  Line 55:  
We can very well see that three forces are at play in the boundary layer region, which are inertia, viscosity and buoyancy forces. Considering the scale of u obtained from eq. (2), the scales of these three forces are  We can very well see that three forces are at play in the boundary layer region, which are inertia, viscosity and buoyancy forces. Considering the scale of u obtained from eq. (2), the scales of these three forces are  
  +  
+  { class="wikitable" border="0"  
+    
+   width="100%" <center>  
<math>\begin{matrix}  <math>\begin{matrix}  
\frac{{{\alpha }^{2}}L}{\delta _{t}^{4}}, & \frac{\nu \alpha L}{\delta _{t}^{4}}, & g\beta \Delta T \\  \frac{{{\alpha }^{2}}L}{\delta _{t}^{4}}, & \frac{\nu \alpha L}{\delta _{t}^{4}}, & g\beta \Delta T \\  
\text{Inertia} & \text{Viscous} & \text{Buoyancy} \\  \text{Inertia} & \text{Viscous} & \text{Buoyancy} \\  
\end{matrix}</math>  \end{matrix}</math>  
  +  </center>  
+  {{EquationRef(4)}}  
+  }  
  Among these three forces, the buoyancy force is never negligible because without it natural convection would not occur. Therefore, the scale of buoyancy force can be used to measure the importance of the inertial and viscous forces. Dividing eq. (  +  Among these three forces, the buoyancy force is never negligible because without it natural convection would not occur. Therefore, the scale of buoyancy force can be used to measure the importance of the inertial and viscous forces. Dividing eq. (4) by the scale of buoyancy force, <math>g\beta \Delta T</math> 
, one obtains the following:<math>\begin{matrix}  , one obtains the following:<math>\begin{matrix}  
\frac{{{\alpha }^{2}}}{g\beta \Delta T{{L}^{3}}}{{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}, & \frac{\nu \alpha }{g\beta \Delta T{{L}^{3}}}{{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}, & 1 \\  \frac{{{\alpha }^{2}}}{g\beta \Delta T{{L}^{3}}}{{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}, & \frac{\nu \alpha }{g\beta \Delta T{{L}^{3}}}{{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}, & 1 \\  
\text{Inertia} & \text{Viscous} & \text{Buoyancy} \\  \text{Inertia} & \text{Viscous} & \text{Buoyancy} \\  
\end{matrix}</math>  \end{matrix}</math>  
  
which can be expressed in terms of dimensionless parameters as [[#References(Bejan, 2004)]]:  which can be expressed in terms of dimensionless parameters as [[#References(Bejan, 2004)]]:  
  +  
+  { class="wikitable" border="0"  
+    
+   width="100%" <center>  
<math>\begin{matrix}  <math>\begin{matrix}  
{{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}\text{Ra}_{L}^{1}{{\Pr }^{1}}, & {{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}\text{Ra}_{L}^{1}, & 1 \\  {{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}\text{Ra}_{L}^{1}{{\Pr }^{1}}, & {{\left( \frac{L}{{{\delta }_{t}}} \right)}^{4}}\text{Ra}_{L}^{1}, & 1 \\  
\text{Inertia} & \text{Viscous} & \text{Buoyancy} \\  \text{Inertia} & \text{Viscous} & \text{Buoyancy} \\  
\end{matrix}</math>  \end{matrix}</math>  
  +  </center>  
+  {{EquationRef(5)}}  
+  }  
where  where  
  +  
+  { class="wikitable" border="0"  
+    
+   width="100%" <center>  
<math>\text{R}{{\text{a}}_{L}}=\frac{g\beta ({{T}_{w}}{{T}_{\infty }}){{L}^{3}}}{\nu \alpha }</math>  <math>\text{R}{{\text{a}}_{L}}=\frac{g\beta ({{T}_{w}}{{T}_{\infty }}){{L}^{3}}}{\nu \alpha }</math>  
  +  </center>  
+  {{EquationRef(6)}}  
+  }  
is the Rayleigh number that is related to the Grashof number by  is the Rayleigh number that is related to the Grashof number by  
<math>\text{R}{{\text{a}}_{L}}=\text{G}{{\text{r}}_{L}}\Pr </math>  <math>\text{R}{{\text{a}}_{L}}=\text{G}{{\text{r}}_{L}}\Pr </math>  
. Therefore, the relative importance of inertia and viscous forces depends on the Prandtl number, which is a property of the fluid. Thus, if the Prandtl number is high (<math>\Pr \gg 1</math>), the inertia term will be negligible and the viscosity term will balance the buoyancy term, whereas if the Prandtl number is low enough (<math>\Pr \ll 1</math>) – as for liquid metals – then the inertia term is considerable and balances the buoyancy term in steady state. The scale analysis for high and lowPrandtl number fluids is presented in detail below.  . Therefore, the relative importance of inertia and viscous forces depends on the Prandtl number, which is a property of the fluid. Thus, if the Prandtl number is high (<math>\Pr \gg 1</math>), the inertia term will be negligible and the viscosity term will balance the buoyancy term, whereas if the Prandtl number is low enough (<math>\Pr \ll 1</math>) – as for liquid metals – then the inertia term is considerable and balances the buoyancy term in steady state. The scale analysis for high and lowPrandtl number fluids is presented in detail below. 
Revision as of 18:47, 5 July 2010
While scale analysis cannot provide the exact functions in eq. (6.36), the form of these functions can be provided (Bejan, 2004). Let us refer to Fig. 6.1 and consider the governing equations in the thermal boundary layer (y˜δ_{t}) for the entire flat plate (x˜L). The thickness of the thermal boundary layer in which the effects of the heated wall are felt is much smaller than the length of the vertical plate, i.e. . For the continuity equation (6.17) to be satisfied, the scales of the two terms must be the same:
The scale of the velocity component in the ydirection is therefore:

which indicates that for flow in the thermal boundary layer. The scale of the velocity component in the xdirection, u, is still unknown at this point.
While the left hand side of the energy equation (6.21) shows the effect of advection, the righthand side shows the effect of diffusion. The scales of the two advective terms on the left hand side of eq. (6.21) are:
which indicates that the scale of the second term on the left hand side of eq. (6.21) is identical to the scale of the first term when the scale of the velocity component in the ydirection is given by eq. (6.37). The temperature difference in the above scale analysis represents the scale of the excess temperature, . The scale of the righthand side of eq. (6.21) is:
The scales of the two sides of the energy equation must be the same:
The above equation can be used to estimate the scale of u as follows:

The scale of v can be obtained by substituting eq. (2) into eq. (1):

where the scale of the thermal boundary layer thickness, δ_{t}, is still unknown at this point.
The respective scales of the two inertial terms on the lefthand side of the momentum equation (6.20) are:
The respective scales of the viscosity and buoyancy terms on the righthand side of eq. (6.20) are:
We can very well see that three forces are at play in the boundary layer region, which are inertia, viscosity and buoyancy forces. Considering the scale of u obtained from eq. (2), the scales of these three forces are

Among these three forces, the buoyancy force is never negligible because without it natural convection would not occur. Therefore, the scale of buoyancy force can be used to measure the importance of the inertial and viscous forces. Dividing eq. (4) by the scale of buoyancy force, gβΔT , one obtains the following: which can be expressed in terms of dimensionless parameters as (Bejan, 2004):

where

is the Rayleigh number that is related to the Grashof number by . Therefore, the relative importance of inertia and viscous forces depends on the Prandtl number, which is a property of the fluid. Thus, if the Prandtl number is high (), the inertia term will be negligible and the viscosity term will balance the buoyancy term, whereas if the Prandtl number is low enough () – as for liquid metals – then the inertia term is considerable and balances the buoyancy term in steady state. The scale analysis for high and lowPrandtl number fluids is presented in detail below.