# Integral solution of boundary layer equation

### From Thermal-FluidsPedia

Yuwen Zhang (Talk | contribs) |
|||

(8 intermediate revisions not shown) | |||

Line 1: | Line 1: | ||

- | The [[similarity solutions]] provides an exact analytical solution for laminar boundary layer conservation equations; however, there are limitations in terms of geometry and boundary conditions, as well as laminar flow restrictions. | + | The [[similarity solutions]] provides an exact analytical solution for laminar boundary layer conservation equations; however, there are limitations in terms of geometry and boundary conditions, as well as laminar flow restrictions.<ref>Faghri, A., Zhang, Y., and Howell, J. R., 2010, Advanced Heat and Mass Transfer, Global Digital Press, Columbia, MO.</ref> |

The integral method gives approximately closed form solutions, which have much less limitation in terms of their geometry and boundary conditions. It can also be applied to both laminar and turbulent flow situations. The integral method easily provides accurate answers (not exact) for complex problems. | The integral method gives approximately closed form solutions, which have much less limitation in terms of their geometry and boundary conditions. It can also be applied to both laminar and turbulent flow situations. The integral method easily provides accurate answers (not exact) for complex problems. | ||

- | [[Image:Fig4.16.png|thumb|400 px|alt=Momentum and heat transfer over a wedge with an unheated starting length | | + | [[Image:Fig4.16.png|thumb|400 px|alt=Momentum and heat transfer over a wedge with an unheated starting length | Momentum and heat transfer over a wedge with an unheated starting length.]] |

Using the integral method, one usually integrates the conservative differential boundary layer equation over the boundary layer thickness by assuming a profile for velocity, temperature, and concentration, as needed. The better the approximate shape for the profile, such as velocity and temperature, the better the prediction of drag force and heat transfer (friction coefficient or heat transfer coefficient). | Using the integral method, one usually integrates the conservative differential boundary layer equation over the boundary layer thickness by assuming a profile for velocity, temperature, and concentration, as needed. The better the approximate shape for the profile, such as velocity and temperature, the better the prediction of drag force and heat transfer (friction coefficient or heat transfer coefficient). | ||

- | The integral methodology has been applied to a variety of configurations to solve transport phenomena problems | + | |

+ | The integral methodology has been applied to a variety of configurations to solve transport phenomena problems <ref name="Schlichting2000">Schlichting, H. and Gersteu, K., 2000, Boundary layer theory, 8th enlarged and revised ed., Springer-Verlag New York</ref>. To illustrate the integral methodology, it will be applied to flow and heat transfer over a wedge with non-uniform temperature and blowing at the wall. Consider two dimensional laminar steady flow with constant properties over a wedge, as shown in figure to the right, with an unheated starting length, ''x<sub>0</sub>''. | ||

The governing boundary layer equations for mass, momentum and energy for constant property, steady state, and laminar flow as well as boundary conditions for convective heat transfer over a wedge are presented below: | The governing boundary layer equations for mass, momentum and energy for constant property, steady state, and laminar flow as well as boundary conditions for convective heat transfer over a wedge are presented below: | ||

Line 52: | Line 53: | ||

|} | |} | ||

- | It should be noted that U is known from potential flow theory: | + | It should be noted that ''U'' is known from potential flow theory: |

<center><math>-\frac{1}{\rho }\frac{\partial p}{\partial x}=U\frac{dU}{dx}</math></center> | <center><math>-\frac{1}{\rho }\frac{\partial p}{\partial x}=U\frac{dU}{dx}</math></center> | ||

- | If U is constant, then | + | If ''U'' is constant, then |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

|- | |- | ||

Line 62: | Line 63: | ||

<math>\frac{dU}{dx}=0</math> | <math>\frac{dU}{dx}=0</math> | ||

</center> | </center> | ||

- | | ( | + | | (5) |

|} | |} | ||

- | As for the case of flow over a flat plate, If | + | As for the case of flow over a flat plate, If ''x<sub>0</sub>'' = 0, ''U'' = constant and ''v<sub>w</sub>'' = 0, the problem will be similar to the case presented using the similarity solution before. |

- | In integral methods, it is customary to assume a profile for u and obtain v from the continuity eq. ( | + | In integral methods, it is customary to assume a profile for ''u'' and obtain ''v'' from the continuity eq. (1). Let us integrate eq. (1) with respect to ''y'' from ''y'' = 0 to ''y'' = ''δ''. |

- | The velocity and temperature field outside δ is uniform. | + | The velocity and temperature field outside ''δ'' is uniform. |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 74: | Line 75: | ||

<math>\int_{0}^{\delta }{\frac{\partial u}{\partial x}dy+}\int_{0}^{\delta }{\frac{\partial v}{\partial y}dy=0}</math> | <math>\int_{0}^{\delta }{\frac{\partial u}{\partial x}dy+}\int_{0}^{\delta }{\frac{\partial v}{\partial y}dy=0}</math> | ||

</center> | </center> | ||

- | |( | + | |(6) |

|} | |} | ||

The second term can be easily integrated. | The second term can be easily integrated. | ||

Line 83: | Line 84: | ||

<math>\int_{0}^{\delta }{\frac{\partial v}{\partial y}dy=\left. v \right|_{y=\delta }-}\left. v \right|_{y=0}=v_{\delta }-v_{w}</math> | <math>\int_{0}^{\delta }{\frac{\partial v}{\partial y}dy=\left. v \right|_{y=\delta }-}\left. v \right|_{y=0}=v_{\delta }-v_{w}</math> | ||

</center> | </center> | ||

- | |( | + | |(7) |

|} | |} | ||

- | Combining ( | + | Combining (6) and (7) we get: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 92: | Line 93: | ||

<math>\int_{0}^{\delta }{\frac{\partial u}{\partial x}dy=v_{w}-v_{\delta }}</math> | <math>\int_{0}^{\delta }{\frac{\partial u}{\partial x}dy=v_{w}-v_{\delta }}</math> | ||

</center> | </center> | ||

- | |( | + | |(8) |

|} | |} | ||

- | Applying Leibnitz’s formula to the left hand side of ( | + | Applying Leibnitz’s formula to the left hand side of (8) yields: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 101: | Line 102: | ||

<math>\frac{\partial }{\partial x}\int_{0}^{\delta }{udy}-u\left( x,\delta \right)\frac{d\delta }{dx}=v_{w}-v_{\delta }</math> | <math>\frac{\partial }{\partial x}\int_{0}^{\delta }{udy}-u\left( x,\delta \right)\frac{d\delta }{dx}=v_{w}-v_{\delta }</math> | ||

</center> | </center> | ||

- | |( | + | |(9) |

|} | |} | ||

- | + | whic''Italic text''h can be rearranged to obtain: | |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 110: | Line 111: | ||

<math>v_{\delta }=v_{w}+U\frac{d\delta }{dx}-\frac{\partial }{\partial x}\left( \int_{0}^{\delta }{udy} \right)</math> | <math>v_{\delta }=v_{w}+U\frac{d\delta }{dx}-\frac{\partial }{\partial x}\left( \int_{0}^{\delta }{udy} \right)</math> | ||

</center> | </center> | ||

- | |( | + | |(10) |

|} | |} | ||

- | The momentum equation ( | + | The momentum equation (2) can be rearranged to the following form: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 119: | Line 120: | ||

<math>\frac{\partial u^{2}}{\partial x}+\frac{\partial vu}{\partial y}-u\left( \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \right)=U\frac{dU}{dx}+\nu \frac{\partial ^{2}u}{\partial y^{2}}</math> | <math>\frac{\partial u^{2}}{\partial x}+\frac{\partial vu}{\partial y}-u\left( \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \right)=U\frac{dU}{dx}+\nu \frac{\partial ^{2}u}{\partial y^{2}}</math> | ||

</center> | </center> | ||

- | |( | + | |(11) |

|} | |} | ||

- | where term in parenthesis on the left-hand side is zero because of the continuity equation. The integration of eq. ( | + | where term in parenthesis on the left-hand side is zero because of the continuity equation. The integration of eq. (11) from ''y'' = 0 to ''y'' = ''δ'' gives: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 128: | Line 129: | ||

<math>\int_{0}^{\delta }{\frac{\partial u^{2}}{\partial x}dy}+\int_{0}^{\delta }{\frac{\partial vu}{\partial y}dy}=\int_{0}^{\delta }{U\frac{dU}{dx}dy}+\nu \int_{0}^{\delta }{\frac{\partial ^{2}u}{\partial y^{2}}dy}</math> | <math>\int_{0}^{\delta }{\frac{\partial u^{2}}{\partial x}dy}+\int_{0}^{\delta }{\frac{\partial vu}{\partial y}dy}=\int_{0}^{\delta }{U\frac{dU}{dx}dy}+\nu \int_{0}^{\delta }{\frac{\partial ^{2}u}{\partial y^{2}}dy}</math> | ||

</center> | </center> | ||

- | |( | + | |(12) |

|} | |} | ||

Upon further integration and simplification, the above equation reduces to | Upon further integration and simplification, the above equation reduces to | ||

Line 137: | Line 138: | ||

<math>\int_{0}^{\delta }{\frac{\partial u^{2}}{\partial x}dy}+\left. vu \right|_{\delta }-\left. vu \right|_{0}=\int_{0}^{\delta }{U\frac{dU}{dx}dy}+\nu \left. \frac{\partial u}{\partial y} \right|_{\delta }-\nu \left. \frac{\partial u}{\partial y} \right|_{0}</math> | <math>\int_{0}^{\delta }{\frac{\partial u^{2}}{\partial x}dy}+\left. vu \right|_{\delta }-\left. vu \right|_{0}=\int_{0}^{\delta }{U\frac{dU}{dx}dy}+\nu \left. \frac{\partial u}{\partial y} \right|_{\delta }-\nu \left. \frac{\partial u}{\partial y} \right|_{0}</math> | ||

</center> | </center> | ||

- | |( | + | |(13) |

|} | |} | ||

- | Using eq. ( | + | Using eq. (10) for ''v<sub>δ</sub>'', the no slip boundary condition at the wall ''u''(0,''x'') = 0, and assuming no velocity gradient at the outer edge of the boundary layer at ''y'' = ''δ'' we get: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 146: | Line 147: | ||

<math>\int_{0}^{\delta }{\frac{\partial u^{2}}{\partial x}}dy+Uv_{w}+U^{2}\frac{d\delta }{dx}-U\frac{\partial }{\partial x}\left( \int_{0}^{\delta }{udy} \right)=-\frac{\tau _{w}}{\rho }+\int_{0}^{\delta }{U\frac{dU}{dx}dy}</math> | <math>\int_{0}^{\delta }{\frac{\partial u^{2}}{\partial x}}dy+Uv_{w}+U^{2}\frac{d\delta }{dx}-U\frac{\partial }{\partial x}\left( \int_{0}^{\delta }{udy} \right)=-\frac{\tau _{w}}{\rho }+\int_{0}^{\delta }{U\frac{dU}{dx}dy}</math> | ||

</center> | </center> | ||

- | |( | + | |(14) |

|} | |} | ||

where | where | ||

Line 154: | Line 155: | ||

<math>\tau _{w}=\left. \mu \frac{\partial u}{\partial y} \right|_{0}</math> | <math>\tau _{w}=\left. \mu \frac{\partial u}{\partial y} \right|_{0}</math> | ||

</center> | </center> | ||

- | | ( | + | | (15) |

|} | |} | ||

is the shear stress at the wall. | is the shear stress at the wall. | ||

+ | |||

Applying Leibnitz’s rule and rearranging will provide the final form. | Applying Leibnitz’s rule and rearranging will provide the final form. | ||

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 164: | Line 166: | ||

<math>\frac{\partial }{\partial x}\left[ \int_{0}^{\delta }{u\left( u-U \right)dy} \right]+\left( \int_{0}^{\delta }{udy} \right)\frac{dU}{dx}-\int_{0}^{\delta }{U\frac{dU}{dx}dy=-\frac{\tau _{w}+\rho Uv_{w}}{\rho }}</math> | <math>\frac{\partial }{\partial x}\left[ \int_{0}^{\delta }{u\left( u-U \right)dy} \right]+\left( \int_{0}^{\delta }{udy} \right)\frac{dU}{dx}-\int_{0}^{\delta }{U\frac{dU}{dx}dy=-\frac{\tau _{w}+\rho Uv_{w}}{\rho }}</math> | ||

</center> | </center> | ||

- | | ( | + | | (16) |

|} | |} | ||

- | The only dependent unknown variable in the above equation is u since v is eliminated using continuity. U, | + | The only dependent unknown variable in the above equation is ''u'' since ''v'' is eliminated using continuity. ''U'', ''τ<sub>w</sub>'', and ''v<sub>w</sub>'' should be known quantities. |

- | Equation ( | + | Equation (16) can be further rearranged. |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

|- | |- | ||

Line 174: | Line 176: | ||

<math>\frac{\partial }{\partial x}\left[ U^{2}\int_{0}^{\delta }{\frac{u}{U}\left( 1-\frac{u}{U} \right)dy} \right]+\left[ \int_{0}^{\delta }{\left( 1-\frac{u}{U} \right)dy} \right]U\frac{dU}{dx}=\frac{\tau _{w}+\rho Uv_{w}}{\rho }</math> | <math>\frac{\partial }{\partial x}\left[ U^{2}\int_{0}^{\delta }{\frac{u}{U}\left( 1-\frac{u}{U} \right)dy} \right]+\left[ \int_{0}^{\delta }{\left( 1-\frac{u}{U} \right)dy} \right]U\frac{dU}{dx}=\frac{\tau _{w}+\rho Uv_{w}}{\rho }</math> | ||

</center> | </center> | ||

- | | ( | + | | (17) |

|} | |} | ||

Line 181: | Line 183: | ||

|- | |- | ||

| width="100%" |<center> | | width="100%" |<center> | ||

- | <math>u=c_{1}+c_{2}y+c_{3}y^{2}+c_{4}y^{3}</math> | + | <math>u=c_{1}+c_{2}y+c_{3}y^{2}+c_{4}y^{3}_{{}}</math> |

</center> | </center> | ||

- | | ( | + | | (18) |

|} | |} | ||

- | where c1, c2, c3, and c4 are constants and can be obtained from boundary conditions for velocity and shear stress at the wall and outer edge. Once the constants are obtained, they are substituted into the momentum integral equation ( | + | where c1, c2, c3, and c4 are constants and can be obtained from boundary conditions for velocity and shear stress at the wall and outer edge. Once the constants are obtained, they are substituted into the momentum integral equation (17) and are used to solve for the momentum boundary layer thickness, ''δ''. |

- | Similarly, the energy equation ( | + | Similarly, the energy equation (3) can be rearranged into the following form to make the integration process easier: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

|- | |- | ||

Line 193: | Line 195: | ||

<math>\frac{\partial uT}{\partial x}+\frac{\partial vT}{\partial y}-T\left( \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \right)=\alpha \frac{\partial ^{2}T}{\partial y^{2}}</math> | <math>\frac{\partial uT}{\partial x}+\frac{\partial vT}{\partial y}-T\left( \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \right)=\alpha \frac{\partial ^{2}T}{\partial y^{2}}</math> | ||

</center> | </center> | ||

- | | ( | + | | (19) |

|} | |} | ||

- | Let’s integrate the above equation from y = 0 to y = | + | Let’s integrate the above equation from ''y'' = 0 to ''y'' = ''δ<sub>T</sub>'', knowing that the term in parenthesis on the left hand side is zero because of the continuity equation. |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

|- | |- | ||

Line 202: | Line 204: | ||

<math>\int_{0}^{\delta _{T}}{\frac{\partial uT}{\partial x}dy+\int_{0}^{\delta _{T}}{\frac{\partial vT}{\partial y}dy}}=\alpha \int_{0}^{\delta _{T}}{\frac{\partial ^{2}T}{\partial y^{2}}}dy</math> | <math>\int_{0}^{\delta _{T}}{\frac{\partial uT}{\partial x}dy+\int_{0}^{\delta _{T}}{\frac{\partial vT}{\partial y}dy}}=\alpha \int_{0}^{\delta _{T}}{\frac{\partial ^{2}T}{\partial y^{2}}}dy</math> | ||

</center> | </center> | ||

- | | ( | + | | (20) |

|} | |} | ||

- | Using integration and the continuity equation to obtain | + | Using integration and the continuity equation to obtain ''v<sub>δ</sub>'', eq. (10), and assuming there is no temperature gradient at the outer edge of the thermal boundary layer, we get the following equation: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 212: | Line 214: | ||

<math>\int_{0}^{\delta _{T}}{\frac{\partial }{\partial x}\left( uT \right)dy-T_{\infty }\frac{\partial }{\partial x}\int_{0}^{\delta _{T}}{udy+T_{\infty }v_{w}}}-v_{w}T_{w}+T_{\infty }u_{\delta _{T}}\frac{d\delta _{T}}{dx}=\left. \frac{-k}{\rho c_{p}}\frac{\partial T}{\partial y} \right|_{y=0}</math> | <math>\int_{0}^{\delta _{T}}{\frac{\partial }{\partial x}\left( uT \right)dy-T_{\infty }\frac{\partial }{\partial x}\int_{0}^{\delta _{T}}{udy+T_{\infty }v_{w}}}-v_{w}T_{w}+T_{\infty }u_{\delta _{T}}\frac{d\delta _{T}}{dx}=\left. \frac{-k}{\rho c_{p}}\frac{\partial T}{\partial y} \right|_{y=0}</math> | ||

</center> | </center> | ||

- | |( | + | |(21) |

|} | |} | ||

Using Leibnitz’s rule and rearranging gives: | Using Leibnitz’s rule and rearranging gives: | ||

Line 221: | Line 223: | ||

<math>\frac{\partial }{\partial x}\left[ \int_{0}^{\delta _{T}}{u\left( T-T_{\infty } \right)dy} \right]+\left( \int_{0}^{\delta _{T}}{udy} \right)\frac{dT_{\infty }}{dx}=\frac{{q}''_{w}}{\rho c_{p}}+v_{w}\left( T_{w}-T_{\infty } \right)</math> | <math>\frac{\partial }{\partial x}\left[ \int_{0}^{\delta _{T}}{u\left( T-T_{\infty } \right)dy} \right]+\left( \int_{0}^{\delta _{T}}{udy} \right)\frac{dT_{\infty }}{dx}=\frac{{q}''_{w}}{\rho c_{p}}+v_{w}\left( T_{w}-T_{\infty } \right)</math> | ||

</center> | </center> | ||

- | |( | + | |(22) |

|} | |} | ||

- | Once again, the integral form of the energy equation is in terms of the unknown temperature, assuming the velocity profile is known. Similar to the momentum integral equation, a temperature profile should be assumed and substituted into the integral energy equation ( | + | Once again, the integral form of the energy equation is in terms of the unknown temperature, assuming the velocity profile is known. Similar to the momentum integral equation, a temperature profile should be assumed and substituted into the integral energy equation (22) to obtain ''δ<sub>T</sub>''. To illustrate the procedure, we use the above approximation to solve the classic problem of flow and heat transfer over a flat plate when ''U'' = ''U<sub>∞</sub>'' = constant, with no blowing or suction at the wall, and with constant wall and flow stream temperature. The momentum and energy integral equations (17) and (22) reduce to the following forms using the above assumptions: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

|- | |- | ||

Line 229: | Line 231: | ||

<math>\frac{\partial }{\partial x}\left[ U^{2}\int_{0}^{\delta }{\frac{u}{U}\left( 1-\frac{u}{U} \right)dy} \right]=\frac{\tau _{w}}{\rho }</math> | <math>\frac{\partial }{\partial x}\left[ U^{2}\int_{0}^{\delta }{\frac{u}{U}\left( 1-\frac{u}{U} \right)dy} \right]=\frac{\tau _{w}}{\rho }</math> | ||

</center> | </center> | ||

- | | ( | + | | (23) |

|} | |} | ||

Line 237: | Line 239: | ||

<math>\frac{\partial }{\partial x}\left[ \int_{0}^{\delta _{T}}{u\left( T-T_{\infty } \right)dy} \right]=\frac{{q}''_{w}}{\rho c_{p}}</math> | <math>\frac{\partial }{\partial x}\left[ \int_{0}^{\delta _{T}}{u\left( T-T_{\infty } \right)dy} \right]=\frac{{q}''_{w}}{\rho c_{p}}</math> | ||

</center> | </center> | ||

- | | ( | + | | (24) |

|} | |} | ||

Line 246: | Line 248: | ||

<math>u\left( 0 \right)=0</math> | <math>u\left( 0 \right)=0</math> | ||

</center> | </center> | ||

- | | ( | + | | (25) |

|} | |} | ||

Line 254: | Line 256: | ||

<math>u\left( \delta \right)=U</math> | <math>u\left( \delta \right)=U</math> | ||

</center> | </center> | ||

- | | ( | + | | (26) |

|} | |} | ||

Line 262: | Line 264: | ||

<math>\left. \frac{\partial u}{\partial y} \right|_{y=\delta }=0</math> | <math>\left. \frac{\partial u}{\partial y} \right|_{y=\delta }=0</math> | ||

</center> | </center> | ||

- | | ( | + | | (27) |

|} | |} | ||

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 269: | Line 271: | ||

<math>\left. \frac{\partial ^{2}u}{\partial y^{2}} \right|_{y=\delta }=0</math> | <math>\left. \frac{\partial ^{2}u}{\partial y^{2}} \right|_{y=\delta }=0</math> | ||

</center> | </center> | ||

- | |( | + | |(28) |

|} | |} | ||

- | It is assumed that shear stress at the boundary layer edge is zero, which is a good approximation for this configuration. Equation ( | + | It is assumed that shear stress at the boundary layer edge is zero, which is a good approximation for this configuration. Equation (28) is obtained by using eq. (27) and applying the x-direction momentum equation at the boundary layer edge. Upon applying eqs. (25) – (28) in eq. (18), one obtains four equations containing four unknowns (c1, c2, c3, and c4). The final velocity profile is |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 278: | Line 280: | ||

<math>\frac{u}{U}=\frac{3}{2}\left( \frac{y}{\delta } \right)-\frac{1}{2}\left( \frac{y}{\delta } \right)^{3},\text{ }y\le \delta </math> | <math>\frac{u}{U}=\frac{3}{2}\left( \frac{y}{\delta } \right)-\frac{1}{2}\left( \frac{y}{\delta } \right)^{3},\text{ }y\le \delta </math> | ||

</center> | </center> | ||

- | |( | + | |(29) |

|} | |} | ||

- | Shear stress at the wall, τw, is calculated using eq. ( | + | Shear stress at the wall, τw, is calculated using eq. (29) |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 287: | Line 289: | ||

<math>\tau _{w}=\mu \left. \frac{\partial u}{\partial y} \right|_{y=0}=\frac{3\mu U}{2\delta }</math> | <math>\tau _{w}=\mu \left. \frac{\partial u}{\partial y} \right|_{y=0}=\frac{3\mu U}{2\delta }</math> | ||

</center> | </center> | ||

- | |( | + | |(30) |

|} | |} | ||

- | Substituting eqs. ( | + | Substituting eqs. (29) and (30) into eq. (23), and performing the integration we get |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 296: | Line 298: | ||

<math>\frac{d}{dx}\left( \frac{39U^{2}\delta }{280} \right)=\frac{3\nu U}{2\delta }</math> | <math>\frac{d}{dx}\left( \frac{39U^{2}\delta }{280} \right)=\frac{3\nu U}{2\delta }</math> | ||

</center> | </center> | ||

- | |( | + | |(31) |

|} | |} | ||

- | Integrating the above equation and assuming δ = 0 at x = 0, we get | + | Integrating the above equation and assuming ''δ'' = 0 at ''x'' = 0, we get |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 305: | Line 307: | ||

<math>\delta =\left( \frac{280\nu x}{13U} \right)^{1/2}</math> | <math>\delta =\left( \frac{280\nu x}{13U} \right)^{1/2}</math> | ||

</center> | </center> | ||

- | |( | + | |(32) |

|} | |} | ||

or | or | ||

Line 314: | Line 316: | ||

<math>\frac{\delta }{x}=\frac{4.64}{\operatorname{Re}_{x}^{1/2}}</math> | <math>\frac{\delta }{x}=\frac{4.64}{\operatorname{Re}_{x}^{1/2}}</math> | ||

</center> | </center> | ||

- | |( | + | |(33) |

|} | |} | ||

The friction coefficient is found as before | The friction coefficient is found as before | ||

Line 323: | Line 325: | ||

<math>c_{f}=\frac{\tau _{\omega }}{\rho \frac{U_{\infty }^{2}}{2}}=\frac{\mu \left. \frac{\partial u}{\partial y} \right|_{y=0}}{\rho \frac{U_{\infty }^{2}}{2}}</math> | <math>c_{f}=\frac{\tau _{\omega }}{\rho \frac{U_{\infty }^{2}}{2}}=\frac{\mu \left. \frac{\partial u}{\partial y} \right|_{y=0}}{\rho \frac{U_{\infty }^{2}}{2}}</math> | ||

</center> | </center> | ||

- | |( | + | |(34) |

|} | |} | ||

- | or using eqs. ( | + | or using eqs. (30) and (32) |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 332: | Line 334: | ||

<math>\frac{c_{f}}{2}=\frac{0.323}{\operatorname{Re}_{x}^{1/2}}</math> | <math>\frac{c_{f}}{2}=\frac{0.323}{\operatorname{Re}_{x}^{1/2}}</math> | ||

</center> | </center> | ||

- | |( | + | |(35) |

|} | |} | ||

- | The predictions of the momentum boundary layer thickness and friction coefficient, | + | The predictions of the momentum boundary layer thickness and friction coefficient, ''c<sub>f</sub>'', by the integral method are 7% and 3% lower than the exact solution obtained using the similarity method, respectively. Using the same general third order polynomial equation for a temperature profile with the following boundary conditions: |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 341: | Line 343: | ||

<math>T\left( 0 \right)=T_{w}=\text{constant}</math> | <math>T\left( 0 \right)=T_{w}=\text{constant}</math> | ||

</center> | </center> | ||

- | |( | + | |(36) |

|} | |} | ||

Line 349: | Line 351: | ||

<math>T\left( \delta _{T} \right)=T_{\infty }=\text{constant}</math> | <math>T\left( \delta _{T} \right)=T_{\infty }=\text{constant}</math> | ||

</center> | </center> | ||

- | |( | + | |(37) |

|} | |} | ||

Line 357: | Line 359: | ||

<math>\left. \frac{\partial T}{\partial y} \right|_{y=\delta _{T}}=0</math> | <math>\left. \frac{\partial T}{\partial y} \right|_{y=\delta _{T}}=0</math> | ||

</center> | </center> | ||

- | |( | + | |(38) |

|} | |} | ||

Line 365: | Line 367: | ||

<math>\left. \frac{\partial ^{2}T}{\partial y^{2}} \right|_{y=0}=0</math> | <math>\left. \frac{\partial ^{2}T}{\partial y^{2}} \right|_{y=0}=0</math> | ||

</center> | </center> | ||

- | |( | + | |(39) |

|} | |} | ||

the temperature profile can be obtained as: | the temperature profile can be obtained as: | ||

Line 374: | Line 376: | ||

<math>\frac{T-T_{\infty }}{T_{w}-T_{\infty }}=1-\frac{3}{2}\frac{y}{\delta _{T}}+\frac{1}{2}\left( \frac{y}{\delta _{T}} \right)^{3},\text{ }y\le \delta _{T}</math> | <math>\frac{T-T_{\infty }}{T_{w}-T_{\infty }}=1-\frac{3}{2}\frac{y}{\delta _{T}}+\frac{1}{2}\left( \frac{y}{\delta _{T}} \right)^{3},\text{ }y\le \delta _{T}</math> | ||

</center> | </center> | ||

- | |( | + | |(40) |

|} | |} | ||

and the heat flux at the wall is | and the heat flux at the wall is | ||

Line 383: | Line 385: | ||

<math>{q}''_{w}=-k\left. \frac{\partial T}{\partial y} \right|_{y=0}=\frac{3}{2}\frac{k}{\delta _{T}}\left( T_{w}-T_{\infty } \right)</math> | <math>{q}''_{w}=-k\left. \frac{\partial T}{\partial y} \right|_{y=0}=\frac{3}{2}\frac{k}{\delta _{T}}\left( T_{w}-T_{\infty } \right)</math> | ||

</center> | </center> | ||

- | |( | + | |(41) |

|} | |} | ||

- | Substitution of eqs. ( | + | Substitution of eqs. (39), (40) and (41) into eq. (24), and approximate integration for <math>\delta _{T}/\delta <1</math> yields: |

- | <math>\delta _{T}/\delta <1</math> | + | |

- | yields: | + | |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

|- | |- | ||

Line 397: | Line 397: | ||

\end{align}</math> | \end{align}</math> | ||

</center> | </center> | ||

- | |( | + | |(42) |

|} | |} | ||

Upon further simplification we get | Upon further simplification we get | ||

Line 403: | Line 403: | ||

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

|- | |- | ||

- | | | + | | wi''Italic text''dth="100%" |<center> |

<math>\frac{d}{dx}\left[ \frac{\delta _{T}^{2}}{\delta }\left( 1-\frac{\delta _{T}^{2}}{14\delta ^{2}} \right) \right]=\frac{10\nu }{\Pr U}\frac{1}{\delta _{T}}</math> | <math>\frac{d}{dx}\left[ \frac{\delta _{T}^{2}}{\delta }\left( 1-\frac{\delta _{T}^{2}}{14\delta ^{2}} \right) \right]=\frac{10\nu }{\Pr U}\frac{1}{\delta _{T}}</math> | ||

</center> | </center> | ||

- | |( | + | |(43) |

|} | |} | ||

- | The only unknown in the above equation is | + | The only unknown in the above equation is ''δ<sub>T</sub>'' since ''δ'' is known. |

- | Assuming | + | Assuming <math>\varsigma =\delta _{T}/\delta </math>, eq. (43) becomes |

- | <math>\varsigma =\delta _{T}/\delta </math> | + | |

- | , eq. ( | + | |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 418: | Line 416: | ||

<math>\frac{d}{dx}\left[ \varsigma ^{2}\delta \left( 1-\frac{\varsigma ^{2}}{14} \right) \right]=\frac{10}{\Pr }\frac{\nu }{U_{\infty }}\frac{1}{\varsigma \delta }</math> | <math>\frac{d}{dx}\left[ \varsigma ^{2}\delta \left( 1-\frac{\varsigma ^{2}}{14} \right) \right]=\frac{10}{\Pr }\frac{\nu }{U_{\infty }}\frac{1}{\varsigma \delta }</math> | ||

</center> | </center> | ||

- | |( | + | |(44) |

|} | |} | ||

- | where term <math>\varsigma ^{2}/14</math> can be neglected since it is much less than 1. The solution of eq. ( | + | where term <math>\varsigma ^{2}/14</math> can be neglected since it is much less than 1. The solution of eq. (44) for ''ζ'' = 0 at ''x'' = ''x<sub>0</sub>'' yields |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 427: | Line 425: | ||

<math>\varsigma =\frac{\Pr ^{-1/3}}{1.026}\left[ 1-\left( \frac{x_{0}}{x} \right)^{3/4} \right]^{1/3}</math> | <math>\varsigma =\frac{\Pr ^{-1/3}}{1.026}\left[ 1-\left( \frac{x_{0}}{x} \right)^{3/4} \right]^{1/3}</math> | ||

</center> | </center> | ||

- | |( | + | |(45) |

|} | |} | ||

- | The local heat transfer coefficient can now be calculated since | + | The local heat transfer coefficient can now be calculated since ''δ<sub>T</sub>'' is known. |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 436: | Line 434: | ||

<math>h_{x}=\frac{{q}''_{w}}{T_{w}-T_{\infty }}=\frac{-k\left. \frac{\partial T}{\partial y} \right|_{y=0}}{T_{w}-T_{\infty }}=\frac{3}{2}\frac{k}{\delta _{T}}</math> | <math>h_{x}=\frac{{q}''_{w}}{T_{w}-T_{\infty }}=\frac{-k\left. \frac{\partial T}{\partial y} \right|_{y=0}}{T_{w}-T_{\infty }}=\frac{3}{2}\frac{k}{\delta _{T}}</math> | ||

</center> | </center> | ||

- | |( | + | |(46) |

|} | |} | ||

or | or | ||

Line 445: | Line 443: | ||

<math>h_{x}=\frac{3}{2}\frac{k}{\varsigma \delta _{T}}</math> | <math>h_{x}=\frac{3}{2}\frac{k}{\varsigma \delta _{T}}</math> | ||

</center> | </center> | ||

- | |( | + | |(47) |

|} | |} | ||

- | Using ζ from eq. ( | + | Using ''ζ'' from eq. (45) and δ from <math>\frac{\delta }{x}=\frac{5}{\sqrt{{{\operatorname{Re}}_{x}}}}</math> to calculate the local Nusselt number, <math>\text{Nu}_{x}=\frac{h_{x}x}{k}</math> |

- | <math>\text{Nu}_{x}=\frac{h_{x}x}{k}</math> | + | |

Line 456: | Line 453: | ||

<math>\text{Nu}_{x}=\frac{0.332\Pr ^{1/3}\operatorname{Re}_{x}^{1/2}}{\left[ 1-\left( \frac{x_{0}}{x} \right)^{3/4} \right]^{1/3}}</math> | <math>\text{Nu}_{x}=\frac{0.332\Pr ^{1/3}\operatorname{Re}_{x}^{1/2}}{\left[ 1-\left( \frac{x_{0}}{x} \right)^{3/4} \right]^{1/3}}</math> | ||

</center> | </center> | ||

- | |( | + | |(48) |

|} | |} | ||

- | The above equation without unheated starting length ( | + | The above equation without unheated starting length (''x<sub>0</sub>'' = 0) reduces to the exact solution obtained by the similarity solution. |

{| class="wikitable" border="0" | {| class="wikitable" border="0" | ||

Line 465: | Line 462: | ||

<math>\text{Nu}_{x}=0.332\Pr ^{1/3}\operatorname{Re}_{x}^{1/2}</math> | <math>\text{Nu}_{x}=0.332\Pr ^{1/3}\operatorname{Re}_{x}^{1/2}</math> | ||

</center> | </center> | ||

- | |( | + | |(49) |

|} | |} | ||

+ | |||

+ | ==References== | ||

+ | {{Reflist}} |

## Current revision as of 01:13, 27 July 2010

The similarity solutions provides an exact analytical solution for laminar boundary layer conservation equations; however, there are limitations in terms of geometry and boundary conditions, as well as laminar flow restrictions.^{[1]}
The integral method gives approximately closed form solutions, which have much less limitation in terms of their geometry and boundary conditions. It can also be applied to both laminar and turbulent flow situations. The integral method easily provides accurate answers (not exact) for complex problems.

Using the integral method, one usually integrates the conservative differential boundary layer equation over the boundary layer thickness by assuming a profile for velocity, temperature, and concentration, as needed. The better the approximate shape for the profile, such as velocity and temperature, the better the prediction of drag force and heat transfer (friction coefficient or heat transfer coefficient).

The integral methodology has been applied to a variety of configurations to solve transport phenomena problems ^{[2]}. To illustrate the integral methodology, it will be applied to flow and heat transfer over a wedge with non-uniform temperature and blowing at the wall. Consider two dimensional laminar steady flow with constant properties over a wedge, as shown in figure to the right, with an unheated starting length, *x _{0}*.

The governing boundary layer equations for mass, momentum and energy for constant property, steady state, and laminar flow as well as boundary conditions for convective heat transfer over a wedge are presented below:

Continuity equation

| (1) |

Momentum equation

| (2) |

Energy equation

| (3) |

Boundary conditions

| (4) |

It should be noted that *U* is known from potential flow theory:

If *U* is constant, then

| (5) |

As for the case of flow over a flat plate, If *x _{0}* = 0,

*U*= constant and

*v*= 0, the problem will be similar to the case presented using the similarity solution before. In integral methods, it is customary to assume a profile for

_{w}*u*and obtain

*v*from the continuity eq. (1). Let us integrate eq. (1) with respect to

*y*from

*y*= 0 to

*y*=

*δ*. The velocity and temperature field outside

*δ*is uniform.

| (6) |

The second term can be easily integrated.

| (7) |

Combining (6) and (7) we get:

| (8) |

Applying Leibnitz’s formula to the left hand side of (8) yields:

| (9) |

whic*Italic text*h can be rearranged to obtain:

| (10) |

The momentum equation (2) can be rearranged to the following form:

| (11) |

where term in parenthesis on the left-hand side is zero because of the continuity equation. The integration of eq. (11) from *y* = 0 to *y* = *δ* gives:

| (12) |

Upon further integration and simplification, the above equation reduces to

| (13) |

Using eq. (10) for *v _{δ}*, the no slip boundary condition at the wall

*u*(0,

*x*) = 0, and assuming no velocity gradient at the outer edge of the boundary layer at

*y*=

*δ*we get:

| (14) |

where

| (15) |

is the shear stress at the wall.

Applying Leibnitz’s rule and rearranging will provide the final form.

| (16) |

The only dependent unknown variable in the above equation is *u* since *v* is eliminated using continuity. *U*, *τ _{w}*, and

*v*should be known quantities. Equation (16) can be further rearranged.

_{w}
| (17) |

It is customary to assume a third order polynomial equation for the velocity profile in order to obtain a reasonable result,

| (18) |

where c1, c2, c3, and c4 are constants and can be obtained from boundary conditions for velocity and shear stress at the wall and outer edge. Once the constants are obtained, they are substituted into the momentum integral equation (17) and are used to solve for the momentum boundary layer thickness, *δ*.
Similarly, the energy equation (3) can be rearranged into the following form to make the integration process easier:

| (19) |

Let’s integrate the above equation from *y* = 0 to *y* = *δ _{T}*, knowing that the term in parenthesis on the left hand side is zero because of the continuity equation.

| (20) |

Using integration and the continuity equation to obtain *v _{δ}*, eq. (10), and assuming there is no temperature gradient at the outer edge of the thermal boundary layer, we get the following equation:

| (21) |

Using Leibnitz’s rule and rearranging gives:

| (22) |

Once again, the integral form of the energy equation is in terms of the unknown temperature, assuming the velocity profile is known. Similar to the momentum integral equation, a temperature profile should be assumed and substituted into the integral energy equation (22) to obtain *δ _{T}*. To illustrate the procedure, we use the above approximation to solve the classic problem of flow and heat transfer over a flat plate when

*U*=

*U*= constant, with no blowing or suction at the wall, and with constant wall and flow stream temperature. The momentum and energy integral equations (17) and (22) reduce to the following forms using the above assumptions:

_{∞}
| (23) |

| (24) |

Let’s assume a polynomial velocity profile is a third degree polynomial function with the following boundary conditions.

| (25) |

| (26) |

| (27) |

| (28) |

It is assumed that shear stress at the boundary layer edge is zero, which is a good approximation for this configuration. Equation (28) is obtained by using eq. (27) and applying the x-direction momentum equation at the boundary layer edge. Upon applying eqs. (25) – (28) in eq. (18), one obtains four equations containing four unknowns (c1, c2, c3, and c4). The final velocity profile is

| (29) |

Shear stress at the wall, τw, is calculated using eq. (29)

| (30) |

Substituting eqs. (29) and (30) into eq. (23), and performing the integration we get

| (31) |

Integrating the above equation and assuming *δ* = 0 at *x* = 0, we get

| (32) |

or

| (33) |

The friction coefficient is found as before

| (34) |

or using eqs. (30) and (32)

| (35) |

The predictions of the momentum boundary layer thickness and friction coefficient, *c _{f}*, by the integral method are 7% and 3% lower than the exact solution obtained using the similarity method, respectively. Using the same general third order polynomial equation for a temperature profile with the following boundary conditions:

| (36) |

| (37) |

| (38) |

| (39) |

the temperature profile can be obtained as:

| (40) |

and the heat flux at the wall is

| (41) |

Substitution of eqs. (39), (40) and (41) into eq. (24), and approximate integration for δ_{T} / δ < 1 yields:

| (42) |

Upon further simplification we get

| (43) |

The only unknown in the above equation is *δ _{T}* since

*δ*is known. Assuming , eq. (43) becomes

| (44) |

where term can be neglected since it is much less than 1. The solution of eq. (44) for *ζ* = 0 at *x* = *x _{0}* yields

| (45) |

The local heat transfer coefficient can now be calculated since *δ _{T}* is known.

| (46) |

or

| (47) |

Using *ζ* from eq. (45) and δ from to calculate the local Nusselt number,

| (48) |

The above equation without unheated starting length (*x _{0}* = 0) reduces to the exact solution obtained by the similarity solution.

| (49) |