From Thermal-FluidsPedia
When condensation is dominated by gravity, the effect of surface tension is negligible, and consequently, no two-phase region exists. Condensation along an inclined wall in a porous medium (See Fig. 1) will be discussed in this subsection. A porous medium saturated with dry vapor at its saturation temperature, T_{sat}, is bounded by an inclined impermeable wall with a temperature T_{w} (T_{w} < T_{sat}). Since the wall temperature is below saturation temperature, film condensation occurs on the inclined wall and the condensate flows downward due to gravity. It is assumed that the condensation is gravity-dominated and, therefore, that the liquid and vapor are separated by a sharp interface, not a two-phase region. In addition, the following assumptions are made by Cheng (1981) in order to obtain an analytical solution:
1. The condensate film is very thin compared to the length of the inclined wall () so that boundary layer
assumption is valid.
2. The properties for the porous medium, liquid, and vapor are independent from temperature.
3. The inclination angle, φ, is small enough for the gravity component in the normal direction of the surface to be negligible.
4. Darcy’s law is valid for both liquid and vapor phases.
5. The saturation temperature, Tsat, is constant.
Figure 1 Gravity dominated film-condensation on an inclined wall in a porous medium.
Under these assumptions, the continuity, momentum, and energy equations for the liquid layer are
The boundary conditions at the wall are
At the interface, the boundary conditions are
where is mass flux of condensate across the interface, and is thermal conductivity of the porous medium saturated with liquid. Combining of eqs. (7) and (8) yields
Introducing stream function
and the following similarity variables:
where
the governing equations and the corresponding boundary conditions become
where
is the dimensionless liquid film thickness and
is Jakob number that measures the degree of subcooling at the wall.
Integrating eq. (15) and considering eq. (17), one obtains
which can be substituted into eqs. (16) and (20) to get
The solution of eq. (24) with eqs. (18) and (19) as boundary conditions is
where the dimensionless film thickness can be obtained by substituting eq. (26) into eq. (25):
The heat flux at the wall is
and the local Nusselt number is
where η_{δ} is function of Jakob number, , as indicated by eq. (27). Cheng (1981) recommended that eq. (29) can be approximated using
In practical application, the average Nusselt number is often of the interest. It can be obtained by integrating eq. (30):
References
Cheng, P., 1981, “Film Condensation Along an Inclined Surface in a Porous Medium,” International Journal of Heat and Mass Transfer, Vol. 24, pp. 983-990.