Gravity dominated film-condensation in a porous medium

From Thermal-FluidsPedia

(Difference between revisions)
Jump to: navigation, search
 
(10 intermediate revisions not shown)
Line 1: Line 1:
-
When condensation is dominated by gravity, the effect of surface tension is negligible, and consequently, no two-phase region exists. Condensation along an inclined wall in a porous medium (See Fig. 8.30) will be discussed in this subsection. A porous medium saturated with dry vapor at its saturation temperature, Tsat, is bounded by an inclined impermeable wall with a temperature Tw (<math>{{T}_{w}}<{{T}_{sat}}</math>). Since the wall temperature is below saturation temperature, film condensation occurs on the inclined wall and the condensate flows downward due to gravity. It is assumed that the condensation is gravity-dominated and, therefore, that the liquid and vapor are separated by a sharp interface, not a two-phase region. In addition, the following assumptions are made by [[#References|Cheng (1981)]] in order to obtain an analytical solution:
+
[[Image:Gravity_dominated_film-condensation_on_an_inclined_wall_in_a_porous_medium.png|thumb|400 px|alt= Gravity dominated film-condensation on an inclined wall in a porous medium. | Figure 1 Gravity dominated film-condensation on an inclined wall in a porous medium.]]
 +
 
 +
When condensation is dominated by gravity, the effect of surface tension is negligible, and consequently, no two-phase region exists. Condensation along an inclined wall in a porous medium (See Fig. 1) will be discussed here. A porous medium saturated with dry vapor at its saturation temperature, T<sub>sat</sub>, is bounded by an inclined impermeable wall with a temperature T<sub>w</sub> (<math>{{T}_{w}}<{{T}_{sat}}</math>). Since the wall temperature is below saturation temperature, film condensation occurs on the inclined wall and the condensate flows downward due to gravity. It is assumed that the condensation is gravity-dominated and, therefore, that the liquid and vapor are separated by a sharp interface, not a two-phase region. In addition, the following assumptions are made by [[#References|Cheng (1981)]] in order to obtain an analytical solution:
1. The condensate film is very thin compared to the length of the inclined wall (<math>{{\delta }_{\ell }}\ll L</math>) so that boundary layer  
1. The condensate film is very thin compared to the length of the inclined wall (<math>{{\delta }_{\ell }}\ll L</math>) so that boundary layer  
Line 10: Line 12:
4. Darcy’s law is valid for both liquid and vapor phases.
4. Darcy’s law is valid for both liquid and vapor phases.
-
5. The saturation temperature, Tsat, is constant.
+
5. The saturation temperature, T<sub>sat</sub>, is constant.
-
 
+
-
[[Image:Chapter7 (18).jpg|400 px|alt= Gravity dominated film-condensation on an inclined wall in a porous medium. | Figure 8.30 Gravity dominated film-condensation on an inclined wall in a porous medium.  ]]
+
Under these assumptions, the continuity, momentum, and energy equations for the liquid layer are
Under these assumptions, the continuity, momentum, and energy equations for the liquid layer are
-
+
 
-
<center><math>\frac{\partial {{u}_{\ell }}}{\partial x}+\frac{\partial {{v}_{\ell }}}{\partial y}=0</math>
+
{| class="wikitable" border="0"
-
(8.355)</center>
+
|-
-
+
| width="100%" |
-
<center><math>{{u}_{\ell }}=\frac{K}{{{\mu }_{\ell }}}({{\rho }_{\ell }}-{{\rho }_{v}})g\cos \phi </math>
+
<center><math>\frac{\partial {{u}_{\ell }}}{\partial x}+\frac{\partial {{v}_{\ell }}}{\partial y}=0</math></center>
-
(8.356)</center>
+
|{{EquationRef|(1)}}
-
+
|}
-
<center><math>{{u}_{\ell }}\frac{\partial {{T}_{\ell }}}{\partial x}+{{v}_{\ell }}\frac{\partial {{T}_{\ell }}}{\partial y}={{\alpha }_{\ell }}\frac{{{\partial }^{2}}{{T}_{\ell }}}{\partial {{y}^{2}}}</math>
+
 
-
(8.357)</center>
+
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
 +
<center><math>{{u}_{\ell }}=\frac{K}{{{\mu }_{\ell }}}({{\rho }_{\ell }}-{{\rho }_{v}})g\cos \phi </math></center>
 +
|{{EquationRef|(2)}}
 +
|}
 +
 
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
 +
<center><math>{{u}_{\ell }}\frac{\partial {{T}_{\ell }}}{\partial x}+{{v}_{\ell }}\frac{\partial {{T}_{\ell }}}{\partial y}={{\alpha }_{\ell }}\frac{{{\partial }^{2}}{{T}_{\ell }}}{\partial {{y}^{2}}}</math></center>
 +
|{{EquationRef|(3)}}
 +
|}
The boundary conditions at the wall are
The boundary conditions at the wall are
-
+
 
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
<center><math>{{v}_{\ell }}=0\begin{matrix}
<center><math>{{v}_{\ell }}=0\begin{matrix}
   , & y=0  \\
   , & y=0  \\
-
\end{matrix}</math>
+
\end{matrix}</math></center>
-
(8.358)</center>
+
|{{EquationRef|(4)}}
 +
|}
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
<center><math>{{T}_{\ell }}={{T}_{w}}\begin{matrix}
<center><math>{{T}_{\ell }}={{T}_{w}}\begin{matrix}
   , & y=0  \\
   , & y=0  \\
-
\end{matrix}</math>
+
\end{matrix}</math></center>
-
(8.359)</center>
+
|{{EquationRef|(5)}}
 +
|}
At the interface, the boundary conditions are
At the interface, the boundary conditions are
-
+
 
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
<center><math>{{T}_{\ell }}={{T}_{sat}}\begin{matrix}
<center><math>{{T}_{\ell }}={{T}_{sat}}\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
   , & y={{\delta }_{\ell }}  \\
-
\end{matrix}</math>
+
\end{matrix}</math></center>
-
(8.360)</center>
+
|{{EquationRef|(6)}}
 +
|}
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
<center><math>\dot{{m}''}={{\rho }_{\ell }}\left( {{u}_{\ell }}\frac{d{{\delta }_{\ell }}}{dx}-{{v}_{\ell }} \right)\begin{matrix}
<center><math>\dot{{m}''}={{\rho }_{\ell }}\left( {{u}_{\ell }}\frac{d{{\delta }_{\ell }}}{dx}-{{v}_{\ell }} \right)\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
   , & y={{\delta }_{\ell }}  \\
-
\end{matrix}</math>
+
\end{matrix}</math></center>
-
(8.361)</center>
+
|{{EquationRef|(7)}}
 +
|}
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
<center><math>\dot{{m}''}{{h}_{\ell v}}=-{{k}_{m\ell }}\frac{\partial T}{\partial y}\begin{matrix}
<center><math>\dot{{m}''}{{h}_{\ell v}}=-{{k}_{m\ell }}\frac{\partial T}{\partial y}\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
   , & y={{\delta }_{\ell }}  \\
-
\end{matrix}</math>
+
\end{matrix}</math></center>
-
(8.362)</center>
+
|{{EquationRef|(8)}}
 +
|}
-
where <math>\dot{{m}''}</math> is mass flux of condensate across the interface, and <math>{{k}_{m\ell }}</math> is thermal conductivity of the porous medium saturated with liquid. Combining of eqs. (8.361) and (8.362) yields
+
where <math>\dot{{m}''}</math> is mass flux of condensate across the interface, and <math>{{k}_{m\ell }}</math> is thermal conductivity of the porous medium saturated with liquid. Combining of eqs. (7) and (8) yields
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
<center><math>{{\rho }_{\ell }}{{h}_{\ell v}}\left( {{u}_{\ell }}\frac{d{{\delta }_{\ell }}}{dx}-{{v}_{\ell }} \right)=-{{k}_{m\ell }}\frac{\partial T}{\partial y}\begin{matrix}
<center><math>{{\rho }_{\ell }}{{h}_{\ell v}}\left( {{u}_{\ell }}\frac{d{{\delta }_{\ell }}}{dx}-{{v}_{\ell }} \right)=-{{k}_{m\ell }}\frac{\partial T}{\partial y}\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
   , & y={{\delta }_{\ell }}  \\
-
\end{matrix}</math>
+
\end{matrix}</math></center>
-
(8.363)</center>
+
|{{EquationRef|(9)}}
 +
|}
Introducing stream function  
Introducing stream function  
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
<center><math>{{u}_{\ell }}=\frac{\partial \psi }{\partial y}\begin{matrix}
<center><math>{{u}_{\ell }}=\frac{\partial \psi }{\partial y}\begin{matrix}
   , & {{v}_{\ell }}=-\frac{\partial \psi }{\partial x}  \\
   , & {{v}_{\ell }}=-\frac{\partial \psi }{\partial x}  \\
-
\end{matrix}</math>
+
\end{matrix}</math></center>
-
(8.364)</center>
+
|{{EquationRef|(10)}}
 +
|}
and the following similarity variables:
and the following similarity variables:
-
<center><math>\eta =\sqrt{R{{a}_{\ell x}}}\frac{y}{x}</math>
+
{| class="wikitable" border="0"
-
(8.365)</center>
+
|-
 +
| width="100%" |
 +
<center><math>\eta =\sqrt{R{{a}_{\ell x}}}\frac{y}{x}</math></center>
 +
|{{EquationRef|(11)}}
 +
|}
-
<center><math>f(\eta )=\frac{\psi }{{{\alpha }_{\ell }}\sqrt{R{{a}_{\ell x}}}}</math>
+
{| class="wikitable" border="0"
-
(8.366)</center>
+
|-
 +
| width="100%" |
 +
<center><math>f(\eta )=\frac{\psi }{{{\alpha }_{\ell }}\sqrt{R{{a}_{\ell x}}}}</math></center>
 +
|{{EquationRef|(12)}}
 +
|}
-
<center><math>\theta (\eta )=\frac{{{T}_{\ell }}-{{T}_{sat}}}{{{T}_{w}}-{{T}_{sat}}}</math>
+
{| class="wikitable" border="0"
-
(8.367)</center>
+
|-
 +
| width="100%" |
 +
<center><math>\theta (\eta )=\frac{{{T}_{\ell }}-{{T}_{sat}}}{{{T}_{w}}-{{T}_{sat}}}</math></center>
 +
|{{EquationRef|(13)}}
 +
|}
where  
where  
-
<center><math>R{{a}_{\ell x}}=\frac{({{\rho }_{\ell }}-{{\rho }_{v}})g\cos \phi Kx}{{{\mu }_{\ell }}{{\alpha }_{\ell }}}</math>
+
{| class="wikitable" border="0"
-
(8.368)</center>
+
|-
 +
| width="100%" |
 +
<center><math>R{{a}_{\ell x}}=\frac{({{\rho }_{\ell }}-{{\rho }_{v}})g\cos \phi Kx}{{{\mu }_{\ell }}{{\alpha }_{\ell }}}</math></center>
 +
|{{EquationRef|(14)}}
 +
|}
the governing equations and the corresponding boundary conditions become
the governing equations and the corresponding boundary conditions become
-
<center><math>{f}'=1</math>
+
{| class="wikitable" border="0"
-
(8.369)</center>
+
|-
 +
| width="100%" |
 +
<center><big><big><math>{f}'=1</math></big></big></center>
 +
|{{EquationRef|(15)}}
 +
|}
 +
 
 +
{| class="wikitable" border="0"
 +
|-
 +
| width="100%" |
 +
<center><big><big><math>2{\theta }''+f{\theta }'=0</math></big></big></center>
 +
|{{EquationRef|(16)}}
 +
|}
-
<center><math>2{\theta }''+f{\theta }'=0</math>
+
{| class="wikitable" border="0"
-
(8.370)</center>
+
|-
 +
| width="100%" |
 +
<center><big><big><math>f(0)=0</math></big></big></center>
 +
|{{EquationRef|(17)}}
 +
|}
-
<center><math>f(0)=0</math>
+
{| class="wikitable" border="0"
-
(8.371)</center>
+
|-
 +
| width="100%" |
 +
<center><big><big><math>\theta (0)=1</math></big></big></center>
 +
|{{EquationRef|(18)}}
 +
|}
-
<center><math>\theta (0)=1</math>
+
{| class="wikitable" border="0"
-
(8.372)</center>
+
|-
 +
| width="100%" |
 +
<center><big><big><math>\theta ({{\eta }_{\delta }})=0</math></big></big></center>
 +
|{{EquationRef|(19)}}
 +
|}
-
<center><math>\theta ({{\eta }_{\delta }})=0</math>
+
{| class="wikitable" border="0"
-
(8.373)</center>
+
|-
-
+
| width="100%" |
-
<center><math>\text{J}{{\text{a}}_{\ell }}{\theta }'({{\eta }_{\delta }})=-\frac{1}{2}f({{\eta }_{\delta }})</math>
+
<center><big><big><math>\text{J}{{\text{a}}_{\ell }}{\theta }'({{\eta }_{\delta }})=-\frac{1}{2}f({{\eta }_{\delta }})</math></big></big></center>
-
(8.374)</center>
+
|{{EquationRef|(20)}}
 +
|}
where  
where  
-
<center><math>{{\eta }_{\delta }}=\sqrt{R{{a}_{\ell x}}}\frac{{{\delta }_{\ell }}}{x}</math>
+
{| class="wikitable" border="0"
-
(8.375)</center>
+
|-
 +
| width="100%" |
 +
<center><math>{{\eta }_{\delta }}=\sqrt{R{{a}_{\ell x}}}\frac{{{\delta }_{\ell }}}{x}</math></center>
 +
|{{EquationRef|(21)}}
 +
|}
is the dimensionless liquid film thickness and  
is the dimensionless liquid film thickness and  
-
<center><math>\text{J}{{\text{a}}_{\ell }}=\frac{{{c}_{p\ell }}({{T}_{sat}}-{{T}_{w}})}{{{h}_{\ell v}}}</math>
+
{| class="wikitable" border="0"
-
(8.376)</center>
+
|-
 +
| width="100%" |
 +
<center><math>\text{J}{{\text{a}}_{\ell }}=\frac{{{c}_{p\ell }}({{T}_{sat}}-{{T}_{w}})}{{{h}_{\ell v}}}</math></center>
 +
|{{EquationRef|(22)}}
 +
|}
is Jakob number that measures the degree of subcooling at the wall.  
is Jakob number that measures the degree of subcooling at the wall.  
-
Integrating eq. (8.369) and considering eq. (8.371), one obtains  
+
Integrating eq. (15) and considering eq. (17), one obtains  
-
<center><math>f=\eta </math>
+
{| class="wikitable" border="0"
-
(8.377)</center>
+
|-
 +
| width="100%" |
 +
<center><big><big><math>f=\eta </math></big></big></center>
 +
|{{EquationRef|(23)}}
 +
|}
-
which can be substituted into eqs. (8.370) and (8.374) to get
+
which can be substituted into eqs. (16) and (20) to get
-
<center><math>2{\theta }''+\eta {\theta }'=0</math>
+
{| class="wikitable" border="0"
-
(8.378)</center>
+
|-
 +
| width="100%" |
 +
<center><big><big><math>2{\theta }''+\eta {\theta }'=0</math></big></big></center>
 +
|{{EquationRef|(24)}}
 +
|}
-
<center><math>\text{J}{{\text{a}}_{\ell }}{\theta }'({{\eta }_{\delta }})=-\frac{1}{2}{{\eta }_{\delta }}</math>
+
{| class="wikitable" border="0"
-
(8.379)</center>
+
|-
 +
| width="100%" |
 +
<center><math>\text{J}{{\text{a}}_{\ell }}{\theta }'({{\eta }_{\delta }})=-\frac{1}{2}{{\eta }_{\delta }}</math></center>
 +
|{{EquationRef|(25)}}
 +
|}
-
The solution of eq. (8.378) with eqs. (8.372) and (8.373) as boundary conditions is
+
The solution of eq. (24) with eqs. (18) and (19) as boundary conditions is
-
<center><math>\theta (\eta )=1-\frac{\text{erf}(\eta /2)}{\text{erf(}{{\eta }_{\delta }}/2)}</math>
+
{| class="wikitable" border="0"
-
(8.380)</center>
+
|-
 +
| width="100%" |
 +
<center><math>\theta (\eta )=1-\frac{\text{erf}(\eta /2)}{\text{erf(}{{\eta }_{\delta }}/2)}</math></center>
 +
|{{EquationRef|(26)}}
 +
|}
-
where the dimensionless film thickness can be obtained by substituting eq. (8.380) into eq. (8.379):
+
where the dimensionless film thickness can be obtained by substituting eq. (26) into eq. (25):
-
<center><math>\text{J}{{\text{a}}_{\ell }}=\sqrt{\frac{\pi {{\eta }_{\delta }}}{2}}\exp \left( \frac{\eta _{\delta }^{2}}{4} \right)\text{erf}\left( \frac{{{\eta }_{\delta }}}{2} \right)</math>
+
{| class="wikitable" border="0"
-
(8.381)</center>
+
|-
 +
| width="100%" |
 +
<center><math>\text{J}{{\text{a}}_{\ell }}=\sqrt{\frac{\pi {{\eta }_{\delta }}}{2}}\exp \left( \frac{\eta _{\delta }^{2}}{4} \right)\text{erf}\left( \frac{{{\eta }_{\delta }}}{2} \right)</math></center>
 +
|{{EquationRef|(27)}}
 +
|}
The heat flux at the wall is
The heat flux at the wall is
-
<center><math>{{{q}''}_{w}}=-{{k}_{m\ell }}{{\left( \frac{\partial {{T}_{\ell }}}{\partial y} \right)}_{y=0}}=\frac{{{k}_{m\ell }}({{T}_{sat}}-{{T}_{w}})\sqrt{\text{R}{{\text{a}}_{\ell x}}}}{x}{{{\theta }'}_{\ell }}(0)</math>
+
{| class="wikitable" border="0"
-
(8.382)</center>
+
|-
 +
| width="100%" |
 +
<center><math>{{{q}''}_{w}}=-{{k}_{m\ell }}{{\left( \frac{\partial {{T}_{\ell }}}{\partial y} \right)}_{y=0}}=\frac{{{k}_{m\ell }}({{T}_{sat}}-{{T}_{w}})\sqrt{\text{R}{{\text{a}}_{\ell x}}}}{x}{{{\theta }'}_{\ell }}(0)</math></center>
 +
|{{EquationRef|(28)}}
 +
|}
and the local Nusselt number is
and the local Nusselt number is
-
<center><math>N{{u}_{x}}=\frac{{{{{q}''}}_{w}}x}{{{k}_{m\ell }}({{T}_{sat}}-{{T}_{w}})}=\frac{Ra_{\ell x}^{1/2}}{\sqrt{\pi }\text{erf(}{{\eta }_{\delta }}/2)}</math>
+
{| class="wikitable" border="0"
-
(8.383)</center>
+
|-
 +
| width="100%" |
 +
<center><math>N{{u}_{x}}=\frac{{{{{q}''}}_{w}}x}{{{k}_{m\ell }}({{T}_{sat}}-{{T}_{w}})}=\frac{Ra_{\ell x}^{1/2}}{\sqrt{\pi }\text{erf(}{{\eta }_{\delta }}/2)}</math></center>
 +
|{{EquationRef|(29)}}
 +
|}
-
where <math>{{\eta }_{\delta }}</math> is function of Jakob number, <math>\text{J}{{\text{a}}_{\ell }}</math>, as indicated by eq. (8.381). [[#References|Cheng (1981)]] recommended that eq. (8.383) can be approximated using  
+
where <math>{{\eta }_{\delta }}</math> is function of Jakob number, <math>\text{J}{{\text{a}}_{\ell }}</math>, as indicated by eq. (27). [[#References|Cheng (1981)]] recommended that eq. (29) can be approximated using  
-
<center><math>N{{u}_{x}}={{\left( \frac{1}{2J{{a}_{\ell }}}+\frac{1}{\pi } \right)}^{1/2}}Ra_{\ell x}^{1/2}</math>
+
{| class="wikitable" border="0"
-
(8.384)</center>
+
|-
 +
| width="100%" |
 +
<center><math>N{{u}_{x}}={{\left( \frac{1}{2J{{a}_{\ell }}}+\frac{1}{\pi } \right)}^{1/2}}Ra_{\ell x}^{1/2}</math></center>
 +
|{{EquationRef|(30)}}
 +
|}
-
In practical application, the average Nusselt number is often of the interest. It can be obtained by integrating eq. (8.384):
+
In practical application, the average Nusselt number is often of the interest. It can be obtained by integrating eq. (30):
-
<center><math>\overline{Nu}=\frac{\bar{h}L}{{{k}_{m\ell }}}={{\left( \frac{1}{J{{a}_{\ell }}}+\frac{2}{\pi } \right)}^{1/2}}Ra_{\ell L}^{1/2}</math>
+
{| class="wikitable" border="0"
-
(8.385)</center>
+
|-
 +
| width="100%" |
 +
<center><math>\overline{Nu}=\frac{\bar{h}L}{{{k}_{m\ell }}}={{\left( \frac{1}{J{{a}_{\ell }}}+\frac{2}{\pi } \right)}^{1/2}}Ra_{\ell L}^{1/2}</math></center>
 +
|{{EquationRef|(31)}}
 +
|}
==References==
==References==
Cheng, P., 1981, “Film Condensation Along an Inclined Surface in a Porous Medium,” International Journal of Heat and Mass Transfer, Vol. 24, pp. 983-990.
Cheng, P., 1981, “Film Condensation Along an Inclined Surface in a Porous Medium,” International Journal of Heat and Mass Transfer, Vol. 24, pp. 983-990.
 +
 +
Faghri, A., and Zhang, Y., 2006, ''Transport Phenomena in Multiphase Systems'', Elsevier, Burlington, MA
 +
 +
Faghri, A., Zhang, Y., and Howell, J. R., 2010, ''Advanced  Heat and Mass Transfer'', Global Digital Press, Columbia, MO.

Current revision as of 08:14, 26 July 2010

 Gravity dominated film-condensation on an inclined wall in a porous medium.
Figure 1 Gravity dominated film-condensation on an inclined wall in a porous medium.

When condensation is dominated by gravity, the effect of surface tension is negligible, and consequently, no two-phase region exists. Condensation along an inclined wall in a porous medium (See Fig. 1) will be discussed here. A porous medium saturated with dry vapor at its saturation temperature, Tsat, is bounded by an inclined impermeable wall with a temperature Tw (Tw < Tsat). Since the wall temperature is below saturation temperature, film condensation occurs on the inclined wall and the condensate flows downward due to gravity. It is assumed that the condensation is gravity-dominated and, therefore, that the liquid and vapor are separated by a sharp interface, not a two-phase region. In addition, the following assumptions are made by Cheng (1981) in order to obtain an analytical solution:

1. The condensate film is very thin compared to the length of the inclined wall ({{\delta }_{\ell }}\ll L) so that boundary layer assumption is valid.

2. The properties for the porous medium, liquid, and vapor are independent from temperature.

3. The inclination angle, φ, is small enough for the gravity component in the normal direction of the surface to be negligible.

4. Darcy’s law is valid for both liquid and vapor phases.

5. The saturation temperature, Tsat, is constant.

Under these assumptions, the continuity, momentum, and energy equations for the liquid layer are

\frac{\partial {{u}_{\ell }}}{\partial x}+\frac{\partial {{v}_{\ell }}}{\partial y}=0
(1)
{{u}_{\ell }}=\frac{K}{{{\mu }_{\ell }}}({{\rho }_{\ell }}-{{\rho }_{v}})g\cos \phi
(2)
{{u}_{\ell }}\frac{\partial {{T}_{\ell }}}{\partial x}+{{v}_{\ell }}\frac{\partial {{T}_{\ell }}}{\partial y}={{\alpha }_{\ell }}\frac{{{\partial }^{2}}{{T}_{\ell }}}{\partial {{y}^{2}}}
(3)

The boundary conditions at the wall are

{{v}_{\ell }}=0\begin{matrix}
   , & y=0  \\
\end{matrix}
(4)
{{T}_{\ell }}={{T}_{w}}\begin{matrix}
   , & y=0  \\
\end{matrix}
(5)

At the interface, the boundary conditions are

{{T}_{\ell }}={{T}_{sat}}\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
\end{matrix}
(6)
\dot{{m}''}={{\rho }_{\ell }}\left( {{u}_{\ell }}\frac{d{{\delta }_{\ell }}}{dx}-{{v}_{\ell }} \right)\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
\end{matrix}
(7)
\dot{{m}''}{{h}_{\ell v}}=-{{k}_{m\ell }}\frac{\partial T}{\partial y}\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
\end{matrix}
(8)

where \dot{{m}''} is mass flux of condensate across the interface, and {{k}_{m\ell }} is thermal conductivity of the porous medium saturated with liquid. Combining of eqs. (7) and (8) yields

{{\rho }_{\ell }}{{h}_{\ell v}}\left( {{u}_{\ell }}\frac{d{{\delta }_{\ell }}}{dx}-{{v}_{\ell }} \right)=-{{k}_{m\ell }}\frac{\partial T}{\partial y}\begin{matrix}
   , & y={{\delta }_{\ell }}  \\
\end{matrix}
(9)

Introducing stream function

{{u}_{\ell }}=\frac{\partial \psi }{\partial y}\begin{matrix}
   , & {{v}_{\ell }}=-\frac{\partial \psi }{\partial x}  \\
\end{matrix}
(10)

and the following similarity variables:

\eta =\sqrt{R{{a}_{\ell x}}}\frac{y}{x}
(11)
f(\eta )=\frac{\psi }{{{\alpha }_{\ell }}\sqrt{R{{a}_{\ell x}}}}
(12)
\theta (\eta )=\frac{{{T}_{\ell }}-{{T}_{sat}}}{{{T}_{w}}-{{T}_{sat}}}
(13)

where

R{{a}_{\ell x}}=\frac{({{\rho }_{\ell }}-{{\rho }_{v}})g\cos \phi Kx}{{{\mu }_{\ell }}{{\alpha }_{\ell }}}
(14)

the governing equations and the corresponding boundary conditions become

f' = 1
(15)
2θ'' + fθ' = 0
(16)
f(0) = 0
(17)
θ(0) = 1
(18)
θ(ηδ) = 0
(19)
\text{J}{{\text{a}}_{\ell }}{\theta }'({{\eta }_{\delta }})=-\frac{1}{2}f({{\eta }_{\delta }})
(20)

where

{{\eta }_{\delta }}=\sqrt{R{{a}_{\ell x}}}\frac{{{\delta }_{\ell }}}{x}
(21)

is the dimensionless liquid film thickness and

\text{J}{{\text{a}}_{\ell }}=\frac{{{c}_{p\ell }}({{T}_{sat}}-{{T}_{w}})}{{{h}_{\ell v}}}
(22)

is Jakob number that measures the degree of subcooling at the wall.

Integrating eq. (15) and considering eq. (17), one obtains

f = η
(23)

which can be substituted into eqs. (16) and (20) to get

2θ'' + ηθ' = 0
(24)
\text{J}{{\text{a}}_{\ell }}{\theta }'({{\eta }_{\delta }})=-\frac{1}{2}{{\eta }_{\delta }}
(25)

The solution of eq. (24) with eqs. (18) and (19) as boundary conditions is

\theta (\eta )=1-\frac{\text{erf}(\eta /2)}{\text{erf(}{{\eta }_{\delta }}/2)}
(26)

where the dimensionless film thickness can be obtained by substituting eq. (26) into eq. (25):

\text{J}{{\text{a}}_{\ell }}=\sqrt{\frac{\pi {{\eta }_{\delta }}}{2}}\exp \left( \frac{\eta _{\delta }^{2}}{4} \right)\text{erf}\left( \frac{{{\eta }_{\delta }}}{2} \right)
(27)

The heat flux at the wall is

{{{q}''}_{w}}=-{{k}_{m\ell }}{{\left( \frac{\partial {{T}_{\ell }}}{\partial y} \right)}_{y=0}}=\frac{{{k}_{m\ell }}({{T}_{sat}}-{{T}_{w}})\sqrt{\text{R}{{\text{a}}_{\ell x}}}}{x}{{{\theta }'}_{\ell }}(0)
(28)

and the local Nusselt number is

N{{u}_{x}}=\frac{{{{{q}''}}_{w}}x}{{{k}_{m\ell }}({{T}_{sat}}-{{T}_{w}})}=\frac{Ra_{\ell x}^{1/2}}{\sqrt{\pi }\text{erf(}{{\eta }_{\delta }}/2)}
(29)

where ηδ is function of Jakob number, \text{J}{{\text{a}}_{\ell }}, as indicated by eq. (27). Cheng (1981) recommended that eq. (29) can be approximated using

N{{u}_{x}}={{\left( \frac{1}{2J{{a}_{\ell }}}+\frac{1}{\pi } \right)}^{1/2}}Ra_{\ell x}^{1/2}
(30)

In practical application, the average Nusselt number is often of the interest. It can be obtained by integrating eq. (30):

\overline{Nu}=\frac{\bar{h}L}{{{k}_{m\ell }}}={{\left( \frac{1}{J{{a}_{\ell }}}+\frac{2}{\pi } \right)}^{1/2}}Ra_{\ell L}^{1/2}
(31)

References

Cheng, P., 1981, “Film Condensation Along an Inclined Surface in a Porous Medium,” International Journal of Heat and Mass Transfer, Vol. 24, pp. 983-990.

Faghri, A., and Zhang, Y., 2006, Transport Phenomena in Multiphase Systems, Elsevier, Burlington, MA

Faghri, A., Zhang, Y., and Howell, J. R., 2010, Advanced Heat and Mass Transfer, Global Digital Press, Columbia, MO.