# Entropy equation

(Difference between revisions)
 Revision as of 00:51, 10 November 2009 (view source)← Older edit Revision as of 22:26, 12 November 2009 (view source)Newer edit → Line 1: Line 1: To obtain the differential form of the second law of thermodynamics, the surface integrals in eq. (2.35) can be rewritten as volume integrals: To obtain the differential form of the second law of thermodynamics, the surface integrals in eq. (2.35) can be rewritten as volume integrals: -
$\qquad \qquad(1)$
(2.109) +
$\int_A {\rho ({{\mathbf{V}}_{rel}} \cdot {\mathbf{n}})sdA} = \int_V {\nabla \cdot (\rho {{\mathbf{V}}_{rel}}s)dV} \qquad \qquad(1)$
(2.109) -
$\qquad \qquad(2)$
(2.110) +
$\int_A {\frac{{{\mathbf{q''}}}}{T} \cdot {\mathbf{n}}dA} = \int_V {\nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right)dV} \qquad \qquad(2)$
(2.110) Substituting eqs. (1) and (2) into eq. (2.35) and considering eq. (2.48) yields Substituting eqs. (1) and (2) into eq. (2.35) and considering eq. (2.48) yields -
$\qquad \qquad(3)$
(2.111) +
$\int_V {\left[ {\frac{\partial }{{\partial t}}\left( {\rho s} \right) + \nabla \cdot (\rho {{\mathbf{V}}_{rel}}s) + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T}} \right]dV} = \int_V {{{\dot s'''}_{gen}}dV} \ge 0 \qquad \qquad(3)$
(2.111) In order for eq. (3) to be true for any arbitrary control volume, the integrand in eq. (3) should always be positive, i.e., In order for eq. (3) to be true for any arbitrary control volume, the integrand in eq. (3) should always be positive, i.e., -
$\qquad \qquad(4)$
(2.112) +
$\frac{\partial }{{\partial t}}\left( {\rho s} \right) + \nabla \cdot (\rho {{\mathbf{V}}_{rel}}s) + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T} = {\dot s'''_{gen}} \ge 0 \qquad \qquad(4)$
(2.112) Equation (4) can be rewritten as Equation (4) can be rewritten as -
$\qquad \qquad(5)$
(2.113) +
$s\left[ {\frac{{\partial \rho }}{{\partial t}} + \nabla \cdot (\rho {{\mathbf{V}}_{rel}})} \right] + \rho \left[ {\frac{{\partial s}}{{\partial t}} + {{\mathbf{V}}_{rel}} \cdot \nabla s} \right] + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T} = {\dot s'''_{gen}} \ge 0 \qquad \qquad(5)$
(2.113) Considering the continuity equation, eq. (2.51), and definition of the substantial derivative, eq. (2.53), eq. (5) can be reduced to Considering the continuity equation, eq. (2.51), and definition of the substantial derivative, eq. (2.53), eq. (5) can be reduced to -
$\qquad \qquad(6)$
(6) +
$\rho \frac{{Ds}}{{Dt}} + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T} = {\dot s'''_{gen}} \ge 0 \qquad \qquad(6)$
where the three terms on the left-hand side represent rate of change of entropy per unit volume, rate of change of entropy per unit volume by heat transfer and internal heat generation, respectively. Equation (6) means that the entropy generation per unit volume must not be negative at any time or location. where the three terms on the left-hand side represent rate of change of entropy per unit volume, rate of change of entropy per unit volume by heat transfer and internal heat generation, respectively. Equation (6) means that the entropy generation per unit volume must not be negative at any time or location. - For a multicomponent system without internal heat generation (), [[#References|Curtiss and Bird (1999; 2001)]] obtained the entropy flux vector and the entropy generation as + For a multicomponent system without internal heat generation ($q''' = 0$), [[#References|Curtiss and Bird (1999; 2001)]] obtained the entropy flux vector and the entropy generation as -
$\qquad \qquad(7)$
(2.115) +
${\mathbf{s''}} = \frac{1}{T}\left( {{\mathbf{q''}} - \sum\limits_{i = 1}^N {{h_i}{{\mathbf{J}}_i}} } \right) \qquad \qquad(7)$
(2.115) -
$\qquad \qquad(8)$
(2.116) +
$T{\dot s'''_{gen}} = - \left( {{\mathbf{q''}} - \sum\limits_{i = 1}^N {{h_i}{{\mathbf{J}}_i}} } \right) \cdot \nabla \ln T - \sum\limits_{i = 1}^N {\left( {{{\mathbf{J}}_i} \cdot \frac{{c{R_u}T}}{{{\rho _i}}}{{\mathbf{d}}_i}} \right)} - {\mathbf{\tau }}:\nabla {\mathbf{V}} - \sum\limits_{i = 1}^N {\frac{{{{\bar g}_i}}}{{{M_i}}}{{\dot m'''}_i}} \qquad \qquad(8)$
(2.116) - where ${d_i}$ is the diffusional driving force [see eq. (2) – (6)],   is partial molar Gibbs free energy,   is total heat flux, obtained by eq. (2.95), including conduction, interdiffusional convection, and Dufour effect. + where ${d_i}$ is the diffusional driving force [see eq. (2) – (6)], ${\bar g_i}$ is partial molar Gibbs free energy, ${\mathbf{q''}}$ is total heat flux, obtained by eq. (2.95), including conduction, interdiffusional convection, and Dufour effect. ==References== ==References==

## Revision as of 22:26, 12 November 2009

To obtain the differential form of the second law of thermodynamics, the surface integrals in eq. (2.35) can be rewritten as volume integrals: $\int_A {\rho ({{\mathbf{V}}_{rel}} \cdot {\mathbf{n}})sdA} = \int_V {\nabla \cdot (\rho {{\mathbf{V}}_{rel}}s)dV} \qquad \qquad(1)$
(2.109) $\int_A {\frac{{{\mathbf{q''}}}}{T} \cdot {\mathbf{n}}dA} = \int_V {\nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right)dV} \qquad \qquad(2)$
(2.110)

Substituting eqs. (1) and (2) into eq. (2.35) and considering eq. (2.48) yields $\int_V {\left[ {\frac{\partial }{{\partial t}}\left( {\rho s} \right) + \nabla \cdot (\rho {{\mathbf{V}}_{rel}}s) + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T}} \right]dV} = \int_V {{{\dot s'''}_{gen}}dV} \ge 0 \qquad \qquad(3)$
(2.111)

In order for eq. (3) to be true for any arbitrary control volume, the integrand in eq. (3) should always be positive, i.e., $\frac{\partial }{{\partial t}}\left( {\rho s} \right) + \nabla \cdot (\rho {{\mathbf{V}}_{rel}}s) + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T} = {\dot s'''_{gen}} \ge 0 \qquad \qquad(4)$
(2.112)

Equation (4) can be rewritten as $s\left[ {\frac{{\partial \rho }}{{\partial t}} + \nabla \cdot (\rho {{\mathbf{V}}_{rel}})} \right] + \rho \left[ {\frac{{\partial s}}{{\partial t}} + {{\mathbf{V}}_{rel}} \cdot \nabla s} \right] + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T} = {\dot s'''_{gen}} \ge 0 \qquad \qquad(5)$
(2.113)

Considering the continuity equation, eq. (2.51), and definition of the substantial derivative, eq. (2.53), eq. (5) can be reduced to $\rho \frac{{Ds}}{{Dt}} + \nabla \cdot \left( {\frac{{{\mathbf{q''}}}}{T}} \right) - \frac{{q'''}}{T} = {\dot s'''_{gen}} \ge 0 \qquad \qquad(6)$

where the three terms on the left-hand side represent rate of change of entropy per unit volume, rate of change of entropy per unit volume by heat transfer and internal heat generation, respectively. Equation (6) means that the entropy generation per unit volume must not be negative at any time or location.

For a multicomponent system without internal heat generation (q''' = 0), Curtiss and Bird (1999; 2001) obtained the entropy flux vector and the entropy generation as ${\mathbf{s''}} = \frac{1}{T}\left( {{\mathbf{q''}} - \sum\limits_{i = 1}^N {{h_i}{{\mathbf{J}}_i}} } \right) \qquad \qquad(7)$
(2.115) $T{\dot s'''_{gen}} = - \left( {{\mathbf{q''}} - \sum\limits_{i = 1}^N {{h_i}{{\mathbf{J}}_i}} } \right) \cdot \nabla \ln T - \sum\limits_{i = 1}^N {\left( {{{\mathbf{J}}_i} \cdot \frac{{c{R_u}T}}{{{\rho _i}}}{{\mathbf{d}}_i}} \right)} - {\mathbf{\tau }}:\nabla {\mathbf{V}} - \sum\limits_{i = 1}^N {\frac{{{{\bar g}_i}}}{{{M_i}}}{{\dot m'''}_i}} \qquad \qquad(8)$
(2.116)

where di is the diffusional driving force [see eq. (2) – (6)], ${\bar g_i}$ is partial molar Gibbs free energy, ${\mathbf{q''}}$ is total heat flux, obtained by eq. (2.95), including conduction, interdiffusional convection, and Dufour effect.